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1. INTRODUCTION

Let a= X o < Xl < ... < X", = b be a fixed partition of the closed
interval [a, b] and let V be the closed flat in the Sobolcv space Wn.1(a, b),
1 ,:;; n m + 1, defined by the interpolation to specified values ri at the
points Xi, i = 0, I, ... , m. If

'X = inf{ii Dill I L'(a.b) : f E Uj. (I)

then the minimization problem (I) does not, in general, have an interpolating
solution in the class Wn.1(a, b). More generally, if V is a closed flat in a
Banach space X, and R is a continuous linear mapping of X onto Y with
finite-dimensional null space, then it is possible that inf{!1 Ru Y: u E UJ is not
attained in V; for example, if Yis not reflexive. In his recent paper [6], Holmes
has discussed, with a both a literature survey and new results, the technique
of embedding such optimization problems in dual spaces. By considering the
extended problem of minimizing :1 R**rp over the flat JU in X**, where
J denotes the natural injection of X into X**, Holmes has shown that a
solution rp exists in JV, achieving the same norm extremal value as in the
original problem under a natural poised ness hypothesis. Thus, the problem
has a solution in the sense of roffe and Tihomirov [7].

rn this paper we shall discuss concrete ways in which such problems can be
extended to possess natural solutions. In particular, for the problem (1),
we expand the class WIl.I(a, b) to include functions whose nth derivatives
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are measures. The extended problem has a solution s such that Var D"-J s
coincides with the extremal value of (l). s has the property that s E' C"- 2 [a, b]
and is a spline function of degree 11 -- I. This occurs because the measure D"s
has minimal support, concentrated at 111+ I or fewer points, as we shall show.
Our results are very general and apply in several variables as well as one
variable, with appropriate operators. Also, more generally, U may be a slab
defined by arbitrary continuous linear inequality constraints in (I) and D"
may be replaced by more general differential operators.

The plan of the paper is as follows. In Section I we present the basic
existence theorem concerning extremal measures in general context. This
convex set of extremal measures, all of which have minimal total variation,
is shown to satisfy the hypotheses of the Krein-Milman theorem so that there
is at least one extremal measure, whose support is shown to be a finite point
set. Univariate and multivariate applications of this result are given in
Section 2 together with a linear programming application. In Section 3 we
examine the approximation properties of the solutions of the extended
problem (I): for functionsfin W",l(a. b) with j D"fll)[",I,1 I the order of
V' approximation, for I p x, is shown to be 0(11" I), where h denotes
the maximum mesh length. For certain cases, this is shown to be best possible
in U(a, b).

We make some final remarks about the solution of (I) and its
generalizations. First there is, of course, no claim made regarding uniqueness.
Second, it is of some interest to compare the analytical character of the spline
solutions of degree 11-- I with that of solutions of comparable V' problems
for I p CD. For p- 2 it has long been known that the unique solution
is a spline function of degree 211 I. For p CO, there exist spline solutions
of degree 11, first shown by Favard [14]: cf. also, Smith [l2]. A general
treatment both in one variable [2] and in several variables [3] which displays
bang-bang phenomena was given by the authors. For I p w, p 2.
the unique solutions satisfy locally a nonlinear differential Euler equation.
This problem was completely solved by Golomb [5] and, in special cases, by
Mangasarian and Schumaker [9].

1. A THEOREM ON CONSTRAINED EXTREMAL MEASURES WITH

MINIMAL SUPPORT

Let X be a compact metric space, C(X) the Banach space of real-valued
continuous functions on X in the supremum norm and M(X) the dual Banach
space of real (finite, regular) Baire measures on X in the total variation norm.
Let N be a finite dimensional subspace of C(X) and let H be the direct sum of
M(X) and N.
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THEOREM 1. Let L o , ... , L", be linearly independent linearfimctionals on H

ol'theform

L;(A., P) = /' F,dA. + 1,(P),
·x

where Fi is continuous on X, i = 0, ... , m and {l,}7~0 is a set of linear functionals
defined on N such that P ~~ Oil' PEN and !,(P) = Ofor each i = 0, ... , m. Let
10 "", 1m be compact intervals in R, each possibly consisting 01' a single point,
and let

U = {(A, P) E H: L,(A, P) E I" i = 0, 1,..., m}.

Set

a = inf{l! A II: (A, P) E U}. (1.1)

Then U contains at least one pair (A, P)for which II A == iX; the set S ol'such
pairs is convex and compact in the weak * topology. The extreme points 01'S are
all 01' the form (L~ C;C)j , P) where r m, OJ is the unit point mass at Ihe t i E X
forj == 0, ... , r and L~ I Cj ! = (x.

Proof Let {gv = (Av , PJ} be a sequence in U with !i A,. ,I'~ eX. Since
L,( gJ E Ii for all v and since Ix F, dAv is also uniformly bounded for all v and i,
we find that

i = 0, ... , m and v = 1,2, .... ( 1.2)

Hence, by the completeness of {l,}~' it follows from (1.2) that the sequence P"
is bounded in norm. Thus, there is a subsequence of {P,], denoted {P,l and
a Po E N with I,(P,.) ---+ I;(Po) as j ---+ w for i == 0, ... , III. Likewisje. the
measures {\} have a' weak* accum~lationpoint Ao with Ao ex. It is easy
to check that (,.\0 , Po) E U and hence I: Ao!1 = ex. Thus we have shown that S
is nonempty. The convexity of S follows from the convexity of U and the
definition of ix. Now the convex set T of measures determined as the set of
first components of S is clearly weak* closed in M(X) since it is bounded and
contains all its weak* sequential limit points (since X is compact metric,
C(X) is separable [4, p. 276, Theorem 14-9.15] and hence the closed unit ball
of M(X) is metrizable in the weak-* topology [I. p. 426]). Now by the
Krein-Milman theorem let (A, P) be any extreme point of S and suppose there
are m + 2 disjoint Baire sets Eo ,... , E"'+1 in Xwhich have positive A-measure.
Let Ai be the restriction of A to Ei for i 0, ... , m + I and let Vi be the vector
in (m --'- I)-space whose jth coordinate is L,(A,. P). .i 0, .... 111 and
i = 0, ... , m + I. The vectors Vo ,... , V"'~l must be linearly dependent in Rm+l

d h
. ",+1

an ence there are scalars ao , ... , am 'l , not all zero. WIth Lo a,l', == 0. Let
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1/1-;1

fL co Lo a,Ai so that fL is not the zero measure. Then we have, for °< E

sufficiently small,

I. A EfLi
1/1 T 1

I(l
()

nt--i~l

E L ai Ai
()

Now, if L~'l ai Ai eF 0, then some choice of E gives a pair (A ..t- EfL, P) in
U with Ii A+ EfLl < iX, a contradiction. Hence, L:;'+1 a, I: Ai :1 cOso that
each of (A + EfL, P), (1.-. EfL, P) lies in S. The convex representation

then contradicts the choice of (A, P) as an extreme point of S. It follows that
there are at most m 1· I disjoint subsets of X of positive Ameasure and the
theorem follows.

2. ApPLICATIONS

(I) Univariate Generalized Splines

Let I = [a, b] be a closed interval in R and let L be a nonsingular linear
differential operator of order n on 101' the form

n---1

L = D" -. I ajDi.
i=ccO

n

where aj E C(l),j = 0, ... , n - I. tffE W",l(l) then the representation

.. fl

f(x) =c P(x) _l_ / B(x, 0 Lf(~) d~,
'(I

a x b, (2.1)

holds, where P in the null space Nt of L is defined by Di pea) ceo Dij(a),
° ~:.; j ~ 11- I and where the function {}(', t) E Nt is defined for each
~ E [a, b] by

()
/,71--1 , o j n -- J,

and eis given by

e(x ~) cc= le(x, 0 jf a
. , 10 otherwise

t x hi
\ .

Here Wn.1(I) is the real Sobolev class OfjE C"-l(1) such that Dn-lfis abso
lutely continuous and DyE [1(1). Tn this application we shall have need of
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the larger class QII(1) {f: LfE M(1)] where Lf is taken in the weak sense
and M(1) is the space of real Baire measures on I. Equivalently,

• b

I(x) = P(x) -;- I 8(x,~) dfL(~),
"'U

for fL E M(l) and P E N L iflE Q"(I). We remark that

(2.2)

II LfI L l(l) = i, Lli M(l)

Now let A {Ao ,... , Am} be a linearly independent set of linear functionals
on C n- 2(l) for which the Peano representations

v = AP + rv
A8(., ~) LfW d~,

• a
(2.3)

hold for every A E A andfE W"·l(l) with {ABC, ~)}AE.1 a linearly independent
set of continuous functions in ~ on I where P is given by (2.1). Since U(J)
is weak* dense in M(l), (2.3) holds over the larger class Qn(J). Let 10 , •.. , 1m
be compact intervals in R, which are possibly single points, and let

U = {fE Wn.l(I): A/f) Eli, i = 0,... , m}.

THEOREM 2.1. Let a~= inf{ii Ll'iur/I:fE U}. Then there are distinct points
to < ... < t r in I, I' <; 111, real numbers ao ,... , a r and a function P E NL such
that the generalized spline function

r

sex) = I ajB(x, t j) + P(x),
j~O

satisfies Ais E Ii , i == 0, ... , m and L~,,~o : aj I (X, i.e., 11 Ls bt[iJ == a . .I' solves
the extended minimization problem ,x = Ls 1',\E[iJ == inf{11 Lfl!M[Il:f E OJ.
Here 0 -:J U consists olallfE Qn(I) satislying AJE I, , i = 0, ... , m. Finally,

Ls = I alJ(., t j ), (2.4)

where D(', t) represents the Dirac delta jimctional at t.

Proof Wn.1(J) is algebraically isomorphic to U(J) EEl N L under (2. I). Now
U(I) 0 N L is weak * dense in M(I) ]\h so that

5' = inf{l! Lfl',\[fI]:fE O} = a.

Indeed, if fLo = Lfo is chosen so that II fLo II ~ 5', fo E 0, choose P v --+* fLo
such that P v E U(!), v == 1,2,... and liPv 1fL,[/] 11 fLo 11,\[[/] . We show how
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to adjust Tv slightly so as to obtain an element which, upon integration,
is in U.

Thus, we consider the map K: V(I) -+ Rlill given by

Kg (If FogeL>;, ... , rFmgdx) ,

where FM) = A;e(·, ~), i = 0, ... , m. K is clearly onto by the linear indepen
dence of the F i and the quotient space U(I)/ker K is algebraically and
topologically isomorphic to R"'-i-1

. Thus, there exist sequences €v -+ 0 and
{<pJ C U(I) such that il <Pv II ~ €v and <Pv + Tv E LU, v = I, ....

Since

it follows that (X = eX. The result now follows from Theorem l.l and the
representation (2.2).

COROLLARY 2.2. Consider the extremal problem (1) of the introduction.
Then there is a polynomial spline function of degree n - I in Cn-2[a, b] with at
most III --i-- 1 knots in (a, b) satisfying Var Dn-l.l, ex and sex;) = r, ,
i = 0, ... , m. Here n ;): 2.

(II) Multivariate Generalized Spline Functions

Let Q be a bounded domain in R', I 2, and let L be a linear differential
operator of order n. OUf fundamental assumption concerning L is that the
mapping

L: Wn.1(Q) -+ V(Q),

is continuous and surjective. Here Wn.1(.Q) is the Sobolev space of functionsf
with distribution derivatives Daf E V(Q), I ex' I ~ n, with norm

(2.5)

We shall further assume that there is a closed linear subspace F of Wn.1(Q)
such that the restriction of L to F admits a unique inverse representation of
the form

f(x) = t G(x, t) LfW d~, fEF, (2.6)

where we explicitly assume that G(x, .) E C(Q) for each x Eo Q.
We have in mind, of course, the specific application where L is a uniformly
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elliptic operator of even order n = 2k, in which case, if n > I, the above
hypotheses are satisfied for sufficiently smooth boundary oQ, for the choice
F = W;k.l(Q) n Wk •1(Q) and L + AI, if A is sufficiently large. Here W:· 1(Q)
is the completion, in the norm (2.5), of the CW(Q) functions with compact
support in Q.

Let A = {Ao , ... , Am} be any linearly independent set of linear functionals
on F such that the Peano representations

,\j = t AG(., 0 Lfm d~,

hold with

AG(', 0 E C(Q).

Then, if [0 , ... , [Ill are compact intervals in Rand

fEF,

U = {fEF: A;jEIi , i = 0, ... , m},

we may state the multivariate analog of the previous theorem.

THEOREM 2.3. Let cx= inf{il LfllLI[Q]:fE U}. Then there are distinct
points to ,... , tr in Q, r ::;;; m, and real numbers ao ,... , aT such that the multi
variate generalized spline function

T

seX) = I apex, t j )

j~O

satisfies Ais E Ii , i = 0, ... , m and L;"oo I aj I = ex, i.e., II Ls !iM[Q] == (x, s solves
an extended minimization problem as before and satisfies the relation (2.4).

(III) A Mathematical Programming Application

Discrete spline functions were introduced by Mangasarian and Schumaker
[10] as minimizing a general forward difference operator L: Rl -~ Rl-n+l
subject to affine constraints in the Ip norm, 1 <; P <; 00. Methods of
mathematical programming were employed in the existence theory to deduce
the closure of certain sets. We shall show here that, in the special case p = I,
there is a solution s such that Ls has support confined to a subspace of Rl of
dimension m + 1 if there are m + I constraint functionals.

Specifically, let L be of the form

n

(Lx)j = I avx v+j- 1 ,

1'=1

.i = 1, ... ,1- n + I, (2.7)
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where an T O. Then L maps RI onto R'-II i 1 and, by the rank-nullity theorem,
the null space N of L is of dimension n I. The complement M of N in Rl
is of dimension 1- n -j- 1 and L maps M bijectively onto RI- n -il. Thus, if
A = {Ao ,... , An,} is a linearly independent set of linear functionals on R' of
the form

I·

Ai:\" c L: aiJxj, x E RI,
i 1

(2.8)

i = 0, ... , 111, such that N C spanO;i::'" {ail ,... , ail} and if 10 ,,,,, f m are compact
intervals in Rand

0.... , mj

then we have the following consequence of Theorem 1.1.

THEOREM 2.4. Let ,y inf{L~=;'H !(Lx)j : x- (Xl"'" XI) E Uj. Then
there exists a vector s E U satisfying L~:7!1 I(Ls)j I (X and, moreover, the
support of Ls is confined to at most m -I-- I components.

Proof Take X to be I - n - 1 distinct points with the discrete topology.

3. ApPROXIMATION

THEOREM 3.1. LetfE Wn,l(l).1 a compact interval in R, with D"fILl[Ij I
and Djf(a) Ofor° .i n _. 1. Let a partition Ll: ace Xo X m b
of 1 be specified with m n - I such that Ll contains afixed set {YI , ... , Yn }

ofn points. Let I' be the spline fill1ction, guaranteed by Corollary 2.2, agreeing
with f on Ll. Then there exists a positive constant C, independent ofI and Ll.
such that

II DjU s)U(/) n I, for r (3.1 )

Moreover, the order given by (3.1) is sharp for n
I == [0, 1]: For each sufficiently small E 0,

2, .i ._~ 0, r 1 and

0. (3.2)

where sm(i!m) E(i!m)I+<, i 0, ... , 111; here Sm is the spline interpolant of
Corollary 2.2, m = 1, 2, ... , and E = (I 1- E)-I.

LEMMA 3.2. Let f; Ll and I' be given as in Theorem 3.1. There exists a
positive constant C'. independent off and Ll. such that

'i D"-l( f -. s)'e C.
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Proof Since,
.. J:

pn-l)(X) = J pn)(t) dt,
a

it follows that Ii Dn-VliL"'[I] ~ 1. Since

81

it suffices to show that 1 Dn-ls(a+)1 is bounded independently of f and J.
Now s may be written

(

sex) = P(x) + I alx - t,)~-l,
jcO

(3.3)

where 2::;0=0 \aj I 1, P is a polynomial of degree n - 1 and a < to < ... <
t,. < b.

Thus, nn-ls(a+) ~c= Dn-lP(a). Now since the space £:7'n-l of real poly
nomials of degree n - 1 is of finite dimension 11, it follows that any two norms
are equivalent. In particular, any set of such polynomials bounded in the
norm

n

IP II 9'n-l = I I P(Y;)I
-[=1

is bounded in the norm

n-l n-l

III Pili £:7'n-l = I i c, [, P(x) = I CjX
j

•

j~O j~O

(3.4)

(3.5)

We shall consider the set of polynomials P, given by (3.3), as f and J vary
according to the hypotheses of Theorem 3.1. Now on the point set {Y1 , ... , Yr,},

f and s agree so that

,.
P(Y) = fey) - I a,(Y - t,)'~-\

joeO

if Y E {Yl , ... , Yn}. Now the representation

lex) = r{(x - t)~-l/(n - 1)!}f(Jd(t) dt
n

implies that iifilc[a,b] :c:;; (b - a)"jn! and, clearly, the function

i'

g(x) = L a,(x - ti)~-l
j~O

(3.6)
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satisfies
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(b- a)"--1,

so that the set of polynomials P, given by (3.3), is bounded in the norms (3.4)
and (3.5). In particular, the coefficients c" 1 arc uniformly bounded so that the
numbers

Dn 1s(a-+) DU1P(a) (11 -- I)! C n 1

are uniformly bounded. This completes the proof of the lemma. Proof of
Theorem 3.1: Standard arguments employing Rolle's Theorem (cf.
[8, Eq. (2.4)]) give the inequalities

° j 11- 2. (3.5)

Combining (3.5) with Lemma 3.2, we obtain (3.1) with C C(j + 1) ...
(11-- l)(b _. a)l/f.

To obtain (3.2), we first observe that the knots to ,... , t" ofs", occur precisely
at a subset of the interior nodal points Xl'"'' X"'-1 . To show this, suppose first
that no three adjacent graph points (Xi ,f(xi )) are collinear. Then, setting
Ji =~ [Xi, Xi ,j], i == 0'00" 111 I, we see that, either t i Fe J i , or f i Fe J i . 1 • In
either case, the magnitude of the difference in slopes of two linear functions,
interpolating at the nodes contained in J i U J i+1 such that their graphs form a
sawtooth on J i U J;i1 and meet at a point distinct from (Xi ,f(x;)), must
strictly exceed the magnitude of the difference in slopes for the sawtooth
function on J i U JH1 with knot at Xi . The case of collinear graph points is
similar. Having established that the knots of Sm are a subset of the nodes, (3.2)
is a simple consequence of an adaptation of an argument first used by Schultz
and Varga [II], as we now show.

Now fix °.< E < I and let

°
Then, for the interval Jo = [0, h], we have. after a change of variable X - h)'.

Precisely the same analysis yields

I = 1'00" f11

for J i cc= [ih, (i + l)h]. Thus,

/(1---1

I :1 EX1
C._ .I'm I L'(J;l ?;: Inh2j

E T(E) = h11 ' T(E).
i-_c·O



Ll EXTREMAL PROBLEMS 83

Now the functionf(x) = EXl+-€ satisfiesf E: W2,1(O, 1) withlf"lulo,l] 1 and
f(O) ~= 1'(0) ~= O. Thus, choosing Yo = 0 and Y1 = 1 we see that f and L1
satisfy the hypotheses of the first part of Theorem 3.1. This concludes the
proof of the theorem.

Remark. The reader will observe that the order of approximation in (3.1),
which is seen to be best possible inagenericsensefor this approximation process,
is of order one less than that achievable by optimal linear approximation
processes (cf. the linear approximation process, defined for splines of degree
n -- I, constructed in [15] and valid for W",l functions). The explanation
for this appears to be that the approximation process defined by Theorem 3.1
is actually intended for the larger class of functions whose nth derivatives.
in the sense of measures, have variation (as measures) not exceeding one.

ACKNOWLEDGMENT

The authors acknowledge helpful comments from Prof. K. Scherer.

REFERENCES

1. N. DUNfORD AND J. T. SCHWARTZ, "Linear Operators," Part l, Wiley, Interscience,
New York, 1958.

2. S. D. FISHER AJ-;D J. W. JEROME, The existence, characterization and essential uniqueness
of solutions of Len extremal problems, Trans. Amcr. Math. Soc. 187 (1974),391-404.

3. S. D. FISHER AND J. W. JEROME, Elliptic variational problems in L' and Len, Indiana J.
Math. 23 (1974), 685-698.

4. A. GLEASO:'oi, "Fundamentals of Abstract Analysis," Addison-Wesley, Reading, MA,
1966.

5. M. GOLOMB, Hm"'-extensions by Hm"'-splines, J. Approximation Theory 5 (1972),
238-275.

6. R. B. HOLMES, R-splines in Banach spaces. I, J. Math. Ana/. App/. 40 (19721, 574-593.
7. A. IOFFE AND V. TIHOMIROV, Extension of variational problems, Trans. A1oscoH' lvfath.

Soc. 18 (1968), 207-273.
8. J. W. JEROME, Minimization problems and linear and nonlinear spline functions. II.

Convergence, SIAM J. NUl/1er. Ana/. 10 (1973), 820-830.
9. O. L. MA:'oiGASARIAN AJ-;D L. L. SCHUMAKER, Splines via optimal control, ill "Ap

proximations with Special Emphasis on Spline Functions" (I. J. Schoenberg, Ed.),
pp. 119-156, Academic Press, New York, 1969.

10. O. L. MAJ-;GASARIAN AJ-;D L. L. SCHUMAKER, Discrete splines via mathematical pro-
gramming, SIAM J. Control 9 (1971), 174-183.

11. M. H. SCHULTZ AND R. S. VARGA, L-splines, Numcr. Math. 10 (1967),345-369.
12. P. W. SMITH, W r "'-splines, Dissertation, Purdue University, Lafayette, lN, 1972.
13. K. YOSIDA, "Functional Analysis," Academic Press, New York, 1965.
14. J. FAVARD, Sur I'intcrpolation, J. Math. Purl'S App/. 19 (1940), 281-306.
15. J. JEROME, On uniform approximation by certain generalized spline functions,

J. Approximation Theory 7 (1973), 143-154.


